Trust Boundary Security Analysis Report: telnetd

Prepared by Brian Williams (brian@vartia.ai)

Executive Summary

We formally modeled the trust boundary between network-facing daemons (such as telnetd) and local authentication
services (such as /usr/bin/login) using TLA+ and the TLC model checker. The model found that without input
sanitization, attacker-controlled data can trigger privileged authentication bypass. With allowlist sanitization, the
model verified no such path exists.

What Was Done

Scope
We created an abstract formal model of the data flow between:

e NetworkDaemon: A service that accepts untrusted input from remote clients
e AuthService: A local service that authenticates users and creates sessions

The analysis is informed by the behavior of telnetd as implemented in GNU Inetutils version 1.9.3.

Network Input

Remote Client —
(attacker-controlled)

NetworkDaemon ——ExecArgs + ExecEnv—>»{ AuthService ——Session—» User Shell

The Model

Every piece of data is tagged with its provenance (origin):

Provenance Trust Level Example
Network Untrusted USER env var from telnet client
Config Trusted Values from /etc configuration

Hardcoded Trusted Compiled-in defaults

AuthService has two authentication modes:

¢ NormalAuth: Validates credentials (safe)
e TrustedAuth: Skips validation for pre-authenticated callers (dangerous if triggered by attacker)

What We Checked

Three security invariants expressing general principles:

Invariant Plain English
AuthenticationIntegrity Skipping authentication requires trusted input
SessionIntegrity Privileged sessions require proper authentication
Provenancelntegrity = Untrusted input cannot trigger privileged modes

Brian Williams - Vartia.ai - brian@vartia.ai

mailto:brian@vartia.ai

What Was Found

The Vulnerability Pattern

Without Sanitization

Client sends
USER=PrivTriggerValue

TLC found a counterexample in 4 states:

State
State
State
State

A WN B

Network provenance
——Network provenance- NetworkDaemon passes directly- ExecArgs
preserved

The invariant AuthenticationIntegrity is violated because:

AuthService triggers- TrustedAuth Mode grants:

remoteEnvUser = PrivTriggerValue, provenance = Network
NetworkDaemon processes input
ExecArgs constructed, provenance still = Network
: TrustedAuth triggered < VIOLATION

authModeUsed = "TrustedAuth" AND execArgsProvenance = Network

The Fix

With Allowlist Sanitization

N

Client sends
USER=PrivTriggerValue

TLC exhaustively checked 12 states with no violations.

——Network provenance- NetworkDaemon -allowlist check—< Valid?
Ye

‘es

How We Know This Is True

Formal Verification Guarantees

Replace with SafeValue

Keep value

ExecArgs
(Config provenance)

cannot trigger- TrustedAuth blocked

TLC performs exhaustive state-space exploration. Within the model's bounds:

Claim

Basis

Vulnerable config has a flaw TLC found an explicit counterexample trace

Secure config has no flaw TLC checked ALL 12 reachable states, none violate invariants

This is not testing or fuzzing—it's mathematical proof that within the model, no sequence of transitions leads to an
invariant violation.

Model Abstraction

The model uses abstract values:

e PrivTriggerValue = "some input that triggers TrustedAuth" (we don't specify what)
e SafeValue = "some input that doesn't trigger TrustedAuth"

This means the proof applies to any concrete exploit pattern, not just known ones.

Brian Williams - Vartia.ai - brian@vartia.ai

Concrete Examples

The Vulnerable Code Path

From telnetd.c:62, the login command template:
char *login_invocation = PATH LOGIN " -p -h Sh %?u{-f Su}{%U}";
From utility.c:1700, the %U expansion:

case 'U':
return getenv("USER") ? xstrdup(getenv("USER")) : xstrdup("");

From pty.c:96-109, the sanitization (insufficient):

static void scrub _env(void) {
for (cpp2 = cpp = environ; *cpp; cpp++) {

// Only removes: LD *, RLD *, LIBPATH=, IFS=

// Does NOT sanitize USER

if (strncmp(*cpp, "LD_", 3) &&
strncmp(*cpp, " RLD ", 5) &&
strncmp(*cpp, "LIBPATH=", 8) &&
strncmp(*cpp, "IFS=", 4))
*Cpp2++ = *cpp;

Example Attack

Step 1: Attacker connects and sets USER environment variable

$ telnet target.example.com
Trying 192.168.1.100...
Connected to target.example.com.

During TELNET NEW-ENVIRON negotiation, client sends:
VAR USER VALUE -froot

Step 2: telnetd constructs login command
The template %?u{-f %u}{%U} means:

o If authenticated user (%u) exists — use -f %u
e Otherwise — use %U (the USER env var)

Without authentication, the command becomes:
/usr/bin/login -p -h client.example.com -froot

Step 3: login interprets - froot as a flag

-f root - ‘'"skip authentication for user root"

Brian Williams - Vartia.ai - brian@vartia.ai

Result: Root shell without password

Attacker telnetd /usr/bin/login Shell

Connect + NEW-ENVIRON: USER=-froot

»
>

No sanitization of USER

exec("/usr/bin/login -p -h host -froot")

»
»

Parses -f as "skip auth"
Parses root as username

Spawns root shell

A

»
»

Attacker telnetd /usr/bin/login Shell

What The Model Captures

In TLA+ terms:

Real System Model Abstraction
USER=-froot PrivTriggerValue
USER=alice SafeValue

USER env var from client remoteEnvProvenance = Network

- f triggers trusted login CouldTriggerPrivilegedMode(PrivTriggerValue) = TRUE
No scrub_env for USER SanitizationPolicy = PolicyNone

The model's counterexample:

State 3: execArgsUser = PrivTriggerValue, execArgsProvenance = Network
State 4: authModeUsed = "TrustedAuth" « VIOLATION

Maps directly to:

login receives "-froot" from network input - triggers -f flag - auth bypass

Brian Williams - Vartia.ai - brian@vartia.ai

Example Fix

Option 1: Strip dangerous characters (Blocklist)

// In telnetd before constructing login command:
char *sanitize username(const char *user) {
if (user == NULL) return NULL;

// Reject if starts with dash (prevents flag injection)

if (user[0] == "-") {
syslog(LOG_WARNING, "Rejected USER starting with dash: %s", user);
return NULL;

}

// Reject control characters and shell metacharacters
for (const char *p = user; *p; p++) {
if (*p < 32 || *p > 126 || strchr("; & \\\"'", *p)) {
syslog(LOG _WARNING, "Rejected USER with bad char: %s", user);
return NULL;

}

return xstrdup(user);

Option 2: Allowlist only valid usernames (Allowlist) - RECOMMENDED

#include <regex.h>

char *sanitize username(const char *user) {
if (user == NULL) return NULL;

// Only allow: lowercase letters, digits, underscore, dash (not at start)
// Max 32 chars (reasonable username limit)

regex _t regex;

regcomp (®ex, ""~[a-z][a-z0-9 -1{0,31}$", REG _EXTENDED | REG NOSUB);

if (regexec(®ex, user, 0, NULL, 0) !'=0) {
syslog(LOG WARNING, "Rejected invalid USER: %s", user);
regfree(®ex);
return NULL;

}

regfree(®ex);
return xstrdup(user);

Option 3: Never use network input in login args (Drop Untrusted)

// Simply don't pass USER to login at all

// Let login prompt for username itself

char *login_invocation = PATH LOGIN " -p -h %h";

// Remove %U entirely - login will ask for username interactively

Brian Williams - Vartia.ai - brian@vartia.ai

Example Regression Test

// test sanitize username.c

void test rejects flag injection() {

assert(sanitize username("-froot") == NULL);
assert(sanitize username("-f root") == NULL);
assert(sanitize username("--help") == NULL);
assert(sanitize username("-") == NULL);

}

void test rejects shell injection() {
assert(sanitize username("alice;id") == NULL);
assert(sanitize username("alice|cat /etc/passwd") == NULL);
assert(sanitize username("$(whoami)") == NULL);
assert(sanitize username(" id ") == NULL);

}

void test rejects special chars() {
assert(sanitize username("alice bob") == NULL); // space
assert(sanitize username("alice\nroot") == NULL); // newline
assert(sanitize username("alice\x00root") == NULL); // null

}

void test accepts valid usernames() {
assert(strcmp(sanitize username("alice"), "alice") == 0);
assert(strcmp(sanitize username("bob123"), "bob123") == 0);
assert(strcmp(sanitize username(" system"), " system") == 0);
assert(strcmp(sanitize username("web-app"), "web-app") == 0);

}

void test length limits() {
char long name[100];
memset(long name, 'a', 99);
long _name[99] = '\0';

assert(sanitize username(long name) == NULL); // too long
}
Mapping Fix to Model
Fix Approach Model Equivalent Effect

Blocklist (strip -) SanitizationPolicy = PolicyBlocklist Removes known-bad patterns
Allowlist (regex) SanitizationPolicy = PolicyAllowlist Only permits known-good patterns
Drop untrusted Don't include %U in template Network data never reaches AuthService args

The model verified that Allowlist policy results in no invariant violations. This maps to: if sanitize username()
correctly rejects all flag-injection patterns, the auth bypass is prevented.

Brian Williams - Vartia.ai - brian@vartia.ai

What Is NOT Proven

Limitations of the Model

Model Does NOT Cover

_ = traCking

Model Covers

Data flow from network to
auth

Auth mode selection

Not Covered
Actual argument
parsing
Other input channels
Implementation bugs
Concurrency

Completeness of
allowlist

Why It Matters

Model assumes "PrivIriggerValue triggers TrustedAuth" abstractly; real login may have edge
cases

Only modeled USER env var; other env vars or protocol fields may have similar issues
Sanitization logic itself could have bugs (buffer overflow, off-by-one, etc.)
Model is sequential; race conditions not considered

Model assumes allowlist correctly identifies all dangerous patterns

Brian Williams - Vartia.ai - brian@vartia.ai

The Abstraction Gap

REAL SYSTEM

telnetd —> login —> shell
(C code) (C code) (bash)
I
abstraction
v
TLA+ MODEL
NetworkDaemon|— | AuthService |—» Session
(abstract) (abstract) (abstract)
|

The model proves properties of the abstraction, not the implementation.

If the real system behaves differently than the model assumes, the guarantees don't transfer. Specifically:
1. We assume NetworkDaemon passes data to AuthService via ExecArgs/ExecEnv
2. We assume AuthService has exactly two auth modes (Normal/Trusted)

3. We assume sanitization correctly neutralizes all trigger patterns

If any assumption is wrong, the proof doesn't apply.

Conclusions

What We Can Claim

{74 The architectural pattern is sound: If a network daemon applies allowlist sanitization before passing data to an
auth service, and the sanitization correctly identifies all privileged-mode triggers, then no network input can trigger
authentication bypass.

{4 The vulnerability class is real: Without sanitization, the data flow pattern permits authentication bypass. This is a
structural property, not dependent on specific exploits.

What We Cannot Claim

Y{ The real implementation is secure: The model doesn't verify the actual C code.

X The sanitization is complete: The model assumes the allowlist catches all dangerous patterns; this must be verified
separately.

Y{ No other vulnerabilities exist: Only this specific data flow was modeled.
Recommendations

1. Implement allowlist sanitization for all data flowing from network to privileged services
2. Audit the actual code to verify it matches the model's assumptions

3. Extend the model to cover other input channels (other env vars, protocol fields)

4. Test the sanitization with fuzzing to find patterns the allowlist might miss

Brian Williams - Vartia.ai - brian@vartia.ai

Appendix: Model Sketch

CONSTANTS
Network, Config, Hardcoded * Provenance levels
SafeValue, PrivTriggerValue * Abstract input values
SanitizationPolicy * None or Allowlist
VARIABLES
phase * Idle - Processing - AuthInvoked - Session/Denied
remoteEnvUser * Input value from network
execArgsProvenance * Provenance of data sent to AuthService
authModeUsed * NormalAuth or TrustedAuth

INVARIANT AuthenticationIntegrity ==
authModeUsed = "TrustedAuth" => execArgsProvenance # Network

Full specification: TrustBoundary.tla (available upon request).
Contact

Brian Williams
Vartia.ai
brian@vartia.ai

If you have legacy network daemons or privileged authentication boundaries you’re concerned about, I offer short-trust
boundary audits that produce explicit boundary contracts, checkable invariants, and concrete regression tests.

Book a call: https://vartia.ai/book.html

Brian Williams - Vartia.ai - brian@vartia.ai

mailto:brian@vartia.ai
https://vartia.ai/book.html

