
Trust Boundary Security Analysis Report: telnetd
Prepared by Brian Williams (brian@vartia.ai)

Executive Summary

We formally modeled the trust boundary between network-facing daemons (such as telnetd) and local authentication
services (such as /usr/bin/login) using TLA+ and the TLC model checker. The model found that without input
sanitization, attacker-controlled data can trigger privileged authentication bypass. With allowlist sanitization, the
model verified no such path exists.

What Was Done

Scope

We created an abstract formal model of the data flow between:

NetworkDaemon: A service that accepts untrusted input from remote clients
AuthService: A local service that authenticates users and creates sessions

The analysis is informed by the behavior of telnetd as implemented in GNU Inetutils version 1.9.3.

Network Input
(attacker-controlled)

ExecArgs + ExecEnv SessionRemote Client NetworkDaemon AuthService User Shell

The Model

Every piece of data is tagged with its provenance (origin):

Provenance Trust Level Example
Network Untrusted USER env var from telnet client
Config Trusted Values from /etc configuration
Hardcoded Trusted Compiled-in defaults

AuthService has two authentication modes:

NormalAuth: Validates credentials (safe)
TrustedAuth: Skips validation for pre-authenticated callers (dangerous if triggered by attacker)

What We Checked

Three security invariants expressing general principles:

Invariant Plain English
AuthenticationIntegrity Skipping authentication requires trusted input
SessionIntegrity Privileged sessions require proper authentication
ProvenanceIntegrity Untrusted input cannot trigger privileged modes

Brian Williams · Vartia.ai · brian@vartia.ai

mailto:brian@vartia.ai

What Was Found

The Vulnerability Pattern

Without Sanitization

Network provenance passes directly
Network provenance

preserved
triggers grants

Client sends
USER=PrivTriggerValue

NetworkDaemon ExecArgs AuthService TrustedAuth Mode Root Session

TLC found a counterexample in 4 states:

State 1: remoteEnvUser = PrivTriggerValue, provenance = Network

State 2: NetworkDaemon processes input

State 3: ExecArgs constructed, provenance still = Network

State 4: TrustedAuth triggered ← VIOLATION

The invariant AuthenticationIntegrity is violated because:

authModeUsed = "TrustedAuth" AND execArgsProvenance = Network

The Fix

With Allowlist Sanitization

Network provenance allowlist check

No

Yes

cannot trigger
Client sends

USER=PrivTriggerValue
NetworkDaemon Valid?

Replace with SafeValue

Keep value

ExecArgs
(Config provenance)

AuthService TrustedAuth blocked

TLC exhaustively checked 12 states with no violations.

How We Know This Is True

Formal Verification Guarantees

TLC performs exhaustive state-space exploration. Within the model's bounds:

Claim Basis
Vulnerable config has a flaw TLC found an explicit counterexample trace
Secure config has no flaw TLC checked ALL 12 reachable states, none violate invariants

This is not testing or fuzzing—it's mathematical proof that within the model, no sequence of transitions leads to an
invariant violation.

Model Abstraction

The model uses abstract values:

PrivTriggerValue = "some input that triggers TrustedAuth" (we don't specify what)
SafeValue = "some input that doesn't trigger TrustedAuth"

This means the proof applies to any concrete exploit pattern, not just known ones.

Brian Williams · Vartia.ai · brian@vartia.ai

Concrete Examples

The Vulnerable Code Path

From telnetd.c:62, the login command template:

char *login_invocation = PATH_LOGIN " -p -h %h %?u{-f %u}{%U}";

From utility.c:1700, the %U expansion:

case 'U':

 return getenv("USER") ? xstrdup(getenv("USER")) : xstrdup("");

From pty.c:96-109, the sanitization (insufficient):

static void scrub_env(void) {

 for (cpp2 = cpp = environ; *cpp; cpp++) {

 // Only removes: LD_*, _RLD_*, LIBPATH=, IFS=

 // Does NOT sanitize USER

 if (strncmp(*cpp, "LD_", 3) &&

 strncmp(*cpp, "_RLD_", 5) &&

 strncmp(*cpp, "LIBPATH=", 8) &&

 strncmp(*cpp, "IFS=", 4))

 *cpp2++ = *cpp;

 }

}

Example Attack

Step 1: Attacker connects and sets USER environment variable

$ telnet target.example.com

Trying 192.168.1.100...

Connected to target.example.com.

During TELNET NEW-ENVIRON negotiation, client sends:

VAR USER VALUE -froot

Step 2: telnetd constructs login command

The template %?u{-f %u}{%U} means:

If authenticated user (%u) exists → use -f %u
Otherwise → use %U (the USER env var)

Without authentication, the command becomes:

/usr/bin/login -p -h client.example.com -froot

Step 3: login interprets -froot as a flag

-f root → "skip authentication for user root"

Brian Williams · Vartia.ai · brian@vartia.ai

Result: Root shell without password

Shell/usr/bin/logintelnetdAttacker

Shell/usr/bin/logintelnetdAttacker

No sanitization of USER

Parses -f as "skip auth"
Parses root as username

Connect + NEW-ENVIRON: USER=-froot

exec("/usr/bin/login -p -h host -froot")

Spawns root shell

What The Model Captures

In TLA+ terms:

Real System Model Abstraction
USER=-froot PrivTriggerValue

USER=alice SafeValue

USER env var from client remoteEnvProvenance = Network
-f triggers trusted login CouldTriggerPrivilegedMode(PrivTriggerValue) = TRUE

No scrub_env for USER SanitizationPolicy = PolicyNone

The model's counterexample:

State 3: execArgsUser = PrivTriggerValue, execArgsProvenance = Network

State 4: authModeUsed = "TrustedAuth" ← VIOLATION

Maps directly to:

login receives "-froot" from network input → triggers -f flag → auth bypass

Brian Williams · Vartia.ai · brian@vartia.ai

Example Fix

Option 1: Strip dangerous characters (Blocklist)

// In telnetd before constructing login command:

char *sanitize_username(const char *user) {

 if (user == NULL) return NULL;

 // Reject if starts with dash (prevents flag injection)

 if (user[0] == '-') {

 syslog(LOG_WARNING, "Rejected USER starting with dash: %s", user);

 return NULL;

 }

 // Reject control characters and shell metacharacters

 for (const char *p = user; *p; p++) {

 if (*p < 32 || *p > 126 || strchr(";|&$`\\\"'", *p)) {

 syslog(LOG_WARNING, "Rejected USER with bad char: %s", user);

 return NULL;

 }

 }

 return xstrdup(user);

}

Option 2: Allowlist only valid usernames (Allowlist) - RECOMMENDED

#include <regex.h>

char *sanitize_username(const char *user) {

 if (user == NULL) return NULL;

 // Only allow: lowercase letters, digits, underscore, dash (not at start)

 // Max 32 chars (reasonable username limit)

 regex_t regex;

 regcomp(®ex, "^[a-z_][a-z0-9_-]{0,31}$", REG_EXTENDED | REG_NOSUB);

 if (regexec(®ex, user, 0, NULL, 0) != 0) {

 syslog(LOG_WARNING, "Rejected invalid USER: %s", user);

 regfree(®ex);

 return NULL;

 }

 regfree(®ex);

 return xstrdup(user);

}

Option 3: Never use network input in login args (Drop Untrusted)

// Simply don't pass USER to login at all

// Let login prompt for username itself

char *login_invocation = PATH_LOGIN " -p -h %h";

// Remove %U entirely - login will ask for username interactively

Brian Williams · Vartia.ai · brian@vartia.ai

Example Regression Test

// test_sanitize_username.c

void test_rejects_flag_injection() {

 assert(sanitize_username("-froot") == NULL);

 assert(sanitize_username("-f root") == NULL);

 assert(sanitize_username("--help") == NULL);

 assert(sanitize_username("-") == NULL);

}

void test_rejects_shell_injection() {

 assert(sanitize_username("alice;id") == NULL);

 assert(sanitize_username("alice|cat /etc/passwd") == NULL);

 assert(sanitize_username("$(whoami)") == NULL);

 assert(sanitize_username("`id`") == NULL);

}

void test_rejects_special_chars() {

 assert(sanitize_username("alice bob") == NULL); // space

 assert(sanitize_username("alice\nroot") == NULL); // newline

 assert(sanitize_username("alice\x00root") == NULL); // null

}

void test_accepts_valid_usernames() {

 assert(strcmp(sanitize_username("alice"), "alice") == 0);

 assert(strcmp(sanitize_username("bob123"), "bob123") == 0);

 assert(strcmp(sanitize_username("_system"), "_system") == 0);

 assert(strcmp(sanitize_username("web-app"), "web-app") == 0);

}

void test_length_limits() {

 char long_name[100];

 memset(long_name, 'a', 99);

 long_name[99] = '\0';

 assert(sanitize_username(long_name) == NULL); // too long

}

Mapping Fix to Model

Fix Approach Model Equivalent Effect
Blocklist (strip -) SanitizationPolicy = PolicyBlocklist Removes known-bad patterns
Allowlist (regex) SanitizationPolicy = PolicyAllowlist Only permits known-good patterns
Drop untrusted Don't include %U in template Network data never reaches AuthService args

The model verified that Allowlist policy results in no invariant violations. This maps to: if sanitize_username()
correctly rejects all flag-injection patterns, the auth bypass is prevented.

Brian Williams · Vartia.ai · brian@vartia.ai

What Is NOT Proven

Limitations of the Model

Model Does NOT Cover

Actual parsing of arguments

Login's internal logic

Race conditions / timing

Memory corruption

Other environment
variables

File system interactions

Model Covers

Data flow from network to
auth

Provenance tracking

Auth mode selection

Not Covered Why It Matters
Actual argument
parsing

Model assumes "PrivTriggerValue triggers TrustedAuth" abstractly; real login may have edge
cases

Other input channels Only modeled USER env var; other env vars or protocol fields may have similar issues
Implementation bugs Sanitization logic itself could have bugs (buffer overflow, off-by-one, etc.)
Concurrency Model is sequential; race conditions not considered
Completeness of
allowlist Model assumes allowlist correctly identifies all dangerous patterns

Brian Williams · Vartia.ai · brian@vartia.ai

The Abstraction Gap

┌───┐

│ REAL SYSTEM │

│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │

│ │ telnetd │───▶│ login │───▶│ shell │ │

│ │ (C code) │ │ (C code) │ │ (bash) │ │

│ └─────────────┘ └─────────────┘ └─────────────┘ │

└───┘

 │

 │ abstraction

 ▼

┌───┐

│ TLA+ MODEL │

│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │

│ │NetworkDaemon│───▶│ AuthService │───▶│ Session │ │

│ │ (abstract) │ │ (abstract) │ │ (abstract) │ │

│ └─────────────┘ └─────────────┘ └─────────────┘ │

└───┘

The model proves properties of the abstraction, not the implementation.

If the real system behaves differently than the model assumes, the guarantees don't transfer. Specifically:

1. We assume NetworkDaemon passes data to AuthService via ExecArgs/ExecEnv
2. We assume AuthService has exactly two auth modes (Normal/Trusted)
3. We assume sanitization correctly neutralizes all trigger patterns

If any assumption is wrong, the proof doesn't apply.

Conclusions

What We Can Claim

✅ The architectural pattern is sound: If a network daemon applies allowlist sanitization before passing data to an
auth service, and the sanitization correctly identifies all privileged-mode triggers, then no network input can trigger
authentication bypass.

✅ The vulnerability class is real: Without sanitization, the data flow pattern permits authentication bypass. This is a
structural property, not dependent on specific exploits.

What We Cannot Claim

❌ The real implementation is secure: The model doesn't verify the actual C code.

❌ The sanitization is complete: The model assumes the allowlist catches all dangerous patterns; this must be verified
separately.

❌ No other vulnerabilities exist: Only this specific data flow was modeled.

Recommendations

1. Implement allowlist sanitization for all data flowing from network to privileged services
2. Audit the actual code to verify it matches the model's assumptions
3. Extend the model to cover other input channels (other env vars, protocol fields)
4. Test the sanitization with fuzzing to find patterns the allowlist might miss

Brian Williams · Vartia.ai · brian@vartia.ai

Appendix: Model Sketch
CONSTANTS

 Network, Config, Hardcoded * Provenance levels

 SafeValue, PrivTriggerValue * Abstract input values

 SanitizationPolicy * None or Allowlist

VARIABLES

 phase * Idle → Processing → AuthInvoked → Session/Denied

 remoteEnvUser * Input value from network

 execArgsProvenance * Provenance of data sent to AuthService

 authModeUsed * NormalAuth or TrustedAuth

INVARIANT AuthenticationIntegrity ==

 authModeUsed = "TrustedAuth" => execArgsProvenance ≠ Network

Full specification: TrustBoundary.tla (available upon request).

Contact

Brian Williams
Vartia.ai
brian@vartia.ai

If you have legacy network daemons or privileged authentication boundaries you’re concerned about, I offer short-trust
boundary audits that produce explicit boundary contracts, checkable invariants, and concrete regression tests.

Book a call: https://vartia.ai/book.html

Brian Williams · Vartia.ai · brian@vartia.ai

mailto:brian@vartia.ai
https://vartia.ai/book.html

